

BYU Mechanical Engineering IRA A. FULTON COLLEGE OF ENGINEERING

Transient thermal conductivity/ diffusivity measurements

Troy Munro Associate Professor Brigham Young University

17 July 2024 Workshop on Measurement and Analysis of Thermochemical and Thermophysical Properties of Molten Salts

Outline

- Motivation
- Necessary conditions for thermal measurements
- Description of methods
- Results from a needle probe sensor
- Future outlook
- Summary

Motivation

Motivation – Limited data

- Large variability within the literature on measured properties
- Absence of data on multiple properties for many salt mixtures
- Thermal conductivity (k) is difficult to measure and predict
- No standard measurement approach
- Debate about expected trend of dk/dT

MSTDB-TP (2.0)

	Entries	% of F-salts	k data	% of F-salts
Total MSTDB-TP entries	488		25	
Fluoride salt entries	290	100%	17	6%
Entries w/ LiF,NaF,KF,BeF ₂ ,ZrF ₄ ,UF ₄	261	90%	14	5%
Entries w/ CaF ₂ ,GdF ₃ ,LaF ₃ ,MgF ₂ , NdF ₃ ,NpF ₃ ,PuF ₄ ,SrF ₂ ,ThF ₄ ,UF ₃	29	10%	3	1%
Entries with UF ₄	150	52 %	5	2%

Motivation – Limited data

- Large variability within the literature on measured properties
- Absence of data on multiple properties for many salt mixtures
- Thermal conductivity (k) is difficult to measure and predict
- No standard measurement approach
- Debate about expected trend of dk/dT

Motivation – Reliability of data for correlations

TABLE 1. Data set	ts considered for the	e thermal condu	ctivity of molten nitrate salts at 0.1 MPs	a			
First author	Publication year	Purity ^a (mass %)	Technique employed ^b	Uncertainty quoted (%)	No. of data	Temperature range (K)	Form of data ^c
			LiNO ₃				
Previous referen	nce correlation						
Janz ¹¹	1979		(Based on McDonald ²²)	20		530-730	E
Primary data							
Asahina ⁴¹	1988		Pulse-heated flat plate (TD)	4	6	536-588	D
Omotani ²⁹	1984		Transient hot wire (liquid probe)	3	3	531-568	Т
Secondary data							
Araki ³⁸	1983		Parallel plates (TD)		4	539-603	D
Tye ⁴⁰	1977	99.80	Parallel plates (TD)		6	533-623	Т
McDonald ²²	1970		Concentric cylinders (2.54 mm)	5		553-728	E
Gustaffson ⁴³	1968	Anal	Transient plane source	10	7	532-581	Т
White ²¹	1967		Concentric cylinders (3.18 mm)	3		553-648	Е
			NaNO ₃				
Previous referen	nce correlation						
Nagasaka ¹²	1991		(Based on Kitade ¹³)	5		584-662	Е
Janz ¹¹	1979		(Based on McDonald ²²)	20		590-740	E
Primary data							
Kitade ¹³	1989	99.00	Transient hot wire (insulated)	3	28	583-661	Т
Asahina ⁴¹	1988		Pulse-heated flat plate (TD)	4	5	583-651	D
Tufeu ²⁰	1985		Concentric cylinders (0.2 mm)	4	10	593-673	Т
Omotani ²⁸	1982	99.90	Transient hot wire (liquid probe)	3	1	587.7	Т
Odawara ⁴⁴	1977		Wave-front interferometer (TD)		9	581-691	Т
Secondary data							
Zhang ³¹	2000	99.95	Transient hot wire (insulated)	3	3	603-664	Т
Ohta ²⁶	1990		Laser flash (TD)		8	592-660	D
Santini ³⁷	1983		Parallel plates (TD)			583-651	E
Kato ³⁸	1977		Parallel plates (TD)	4.5	10	595-654	D
McDonald ²²	1970		Concentric cylinders (2.54 mm)	5		593-728	Е
Gustafsson ⁴²	1968	Anal	Transient plane source	2.6	9	588-727	Т
White ²¹	1967		Concentric cylinders (3.18 mm)	5	5	619-692	D
Bloom ²⁵	1965	Anal	Concentric cylinders (0.9 mm)	5	6	602-695	Т

FIG. 1. Thermal conductivity at 0.1 MPa of molten NaCl as a function of the temperature. Golyshev and Gonik³ (——), Nagasaka *et al.*⁴ (\bullet), Smirnov *et al.*⁵ (X), Harada *et al.*⁶ (Φ), Bystrai and Dessyatnik⁷ (\Box), Veneraki *et al.*⁸ (—•), Egorov and Revyakina⁹ (\triangleq), Fedorov and Matsuev¹⁰ (\blacksquare), and the reference correlation of Janz *et al.*¹¹ (red line); melting point temperature (--).

Necessary Conditions to Measure Thermal Conductivity/Diffusivity

Simplification of Measurement Process

To measure the thermal properties of a solid, the following are needed:

3.

- A heat source
- A temperature change
 - An accurate temperature sensor
- Model relating temperature and heat transfer to property

An absolute method is one where theory and experiment match so well that no calibration is needed.

 $\partial^2 T$ $1 \partial T$ $\overline{\partial x^2}$ $\alpha \partial t$ dx

Traditional Approaches in Solids

Table 1. Commonly used thermal characterization techniques reviewed in this article.

	Bulk material	Thin film
Steady-state	Absolute technique; Comparative technique; Radial heat flow method; Parallel conductance method	Steady-state electrical heating methods
Transient (frequency-domain)	Pulsed power technique	3ω method; FDTR technique
Transient (time-domain)	Hot-wire method (needle-probe method); Laser flash method; Transient plane source (TPS) method	TDTR technique

Palacios, 2019, https://doi.org/10.1016/j.rser.2019.03.020

Zhao, 2016, doi: 10.1115/1.4034605

Measurement constraints not present when measuring solids

To measure molten salt thermal conductivity, the device needs to consider and deal with:

- 1. Electrical isolation from salt
- 2. Corrosion resistance
- 3. High temperatures
- 4. How to reduce convection
- 5. How to account for radiation
- 6. Sample volume
- 7. Measurement time
- 8. Glovebox compatiblity

Key Problem

We are operating in a space where:

<u>Standard techniques</u> don't exactly apply and

Standard reference materials don't exist

What I want us to avoid

Nanoparticle enhancement

Jiang, H., 2015, DOI: 10.1016/j.jtice.2015.03.037

Spider Silk

C. Xing, T. Munro, et al., Measurement Science and Technology, 2013.

Nano-fluids Round-Robin testing

Organization/contact person	Experimental method ^a for thermal conductivity measurement (Ref.)
Argonne National Laboratory/E. V. Timofeeva	KD2 Pro
CEA/C Reynaud	Steady-state coavial cylinders ^c
Chinese University of Hong Kong/S .O. Zhou	Steady-state coaxia cyniners
DSO National Laboratories/L. G. Kieng	Supplied papofluid samples
ETH Zurish and IBM Pasaarsh/W Esshar	THW and parallal hot plates
Halmut Sahmidt University Armad Ennag/	Triw and parallel not plates
S. Kabelac	Guarded hot plate ^d
Illinois Institute of Technology/D. Venerus	Formed Payleigh scattering ⁸
Indian Institute of Technology, Kharagpur/	Poleed Rayleigh scattering
I Manna	KD2 Pro
Indian Institute of Technology Madras/T Sundararajan S K	102110
Das	THW ^h
Indira Gandhi Centre for Atomic Research/J. Philip	THW ^d , KD2
Kent State University/Y. Tolmachev	KD2 Pro
Korea Aerospace University/S. P. Jang	THW ⁱ
Korea Univ./C. Kim	THW ^d
METSS Corp./F. Botz	THW ^d
MIT/J. Buongiorno, L.W. Hu, T. McKrell	THW ^j
MIT/G. Chen	THW ^k
Nanyang Technological University/K. C. Leong	THWI
NIST/M. A Kedzierski	KD2 Pro
North Carolina State University-Raleigh/J. Eapen	Contributed to data analysis
Olin College of Engineering/R. Christianson, J. Townsend	THW ⁿ
Queen Mary University of London/D. Wen	THW ^d
RPI/P. Keblinski	Contributed to data analysis
SASOL of North America/Y. Chang	Supplied nanofluid samples
Silesian University of Technology/A. B. Jarzebski, G. Dzido	THW ⁰
South Dakota School of Mines and Technology/H. Hong	Hot Disk ^p
Stanford University/P. Gharagozloo, K. Goodson	IR thermometry9
Texas A&M University/J. L. Alvarado	KD2 Pro
Ulsan National Institute of Science and Technology; Tokyo	
Institute of Technology/I. C. Bang, J. H. Kim	KD2 Pro
Université Libre de Bruxelles, University of Naples/C. S. Iorio	Modified hot wall technique ^f , Parallel plates ^s
University of Leeds/Y. Ding	KD2 and parallel hot plates ^t
University of Pittsburgh/M. K. Chyu	Unitherm [™] 2022 (Guarded heat flow meter)
University of Puerto Rico-Mayaguez/J. G. Gutierrez	THW ^u

When ensuring experimental conditions matched theory, no large increase in k was observed

Buongiorno, Jacopo, et al. JAP, 2009, p. 094312.

Spider Silk

Dragline	Reduced TET	Curve-Fit Red. TET	Full TET	3ω	Fluoro	When radia
k (W m⁻¹ K⁻¹)	1.2-191 (Large error)	1.18 <mark>(25%)</mark>	1.23 (12%)	1.24 (12%)	-	heat loss wa
α (mm² s ⁻¹)	0.65-127 (Large error)	0.63 <mark>(25%)</mark>	0.62 (12%)	0.61 (15%)	-	account for large surfac
<i>рс_р</i> (MJ m ⁻³ K ⁻¹)	_	_	-	2.0 (15%)	-	area-to-volu ration,
As Spun Synth <i>k</i> (W m ⁻¹ K ⁻¹)	-	0.29 <mark>(25%)</mark>	0.24 (13%)	-	-	reasonable values of k
As Spun Synth (mm ² s ⁻¹)	-	0.16 <mark>(25%)</mark>	0.17 (15%)	-	-	were observ 1.2 W/m K,
Processed Synth α (mm ² s ⁻¹)	-	0.33 <mark>(25%)</mark>	-	_	0.3 <mark>(25%)</mark>	instead of 400 W/m K
		T ₀ T ₀ Copp Heat S	TET Silver Pass	te		

en radiation loss was uded to ount for e surface a-to-volume n, onable es of ke observed W/m K, ead of

Description of Methods

Optical, electrical heating

Thermal Conductivity/Diffusivity Techniques

- Parallel plate method
 - Variable gap
- Concentric cylinders
- Forced Rayleigh scattering
 - Transient grating spectroscopy (TGS)
- Transient hot-wire (THW)
 - Needle probe
 - 3ω
- Laser flash (LFA)
- Modulated photothermal radiometry (MPR)
- Time domain thermoreflectance (TDTR)

Institution	Approach for α , k , e
ORNL	Variable gap apparatus (k)
ANL	LFA (α)
INL	LFA (α)
PNNL	LFA (α)
LANL	LFA (α)
CNL	LFA (α)
JRC	LFA (α)
Univ. of Ariz./ Georgia Tech	LFA (α)
Ural Rus. Aca. Sci.	LFA (α)
Huazhong U. Sci. Tech.	LFA (α)
NCSU	TDTR (k)
UCSD	3ω (k), MPR (e)
MIT	TGS (α)
Univ. Rome	Needle probe (k^*)
BYU	THW (k), Needle Probe (k)

Variable Gap Apparatus (variant of heat flow meter)

The Variable-Gap Technique for Measuring Thermal Conductivity of Fluid Specimens

J.W. COOKE

Operation

- Using heaters with known output and heat sinks, establish a temperature difference across a thin layer of the sample ($L < 300 \ \mu m$)
- Record the temperatures along the centerline above and below sample after reaching steady state
- Repeat at different thicknesses and analyzing using Fourier's law, $k = (\Delta L / \Delta T) * q''$

Drawbacks

- Steady state can still result in convective heat losses (based on gap thickness)
- Requires careful design to minimize radial heat losses
- Requires calibration since heat flux is hard to directly measure

Sample 1

Temperature

Zhao, Dongliang, et al. Journal of Electronic Packaging, 2016.

Heat Source

 $\Delta T_{\rm e} = (O/A)\Delta x_{\rm e}/k_{\rm e}$

Variable Gap Apparatus (variant of heat flow meter)

The Variable-Gap Technique for Measuring Thermal Conductivity of Fluid Specimens

J.W. COOKE

Operation

- Using heaters with known output and heat sinks, establish a temperature difference across a thin layer of the sample ($L < 300 \ \mu m$)
- Record the temperatures along the centerline above and below sample after reaching steady state
- Repeat at different thicknesses and analyzing using Fourier's law, $k = (\Delta L / \Delta T) * q''$

- Steady state can still result in convective heat losses (based on gap thickness)
- Requires careful design to minimize radial heat losses
- Requires calibration since heat flux is hard to directly measure

Concentric Cylinders

Heat capacity and thermal conductivity of molten ternary lithium, sodium, potassium, and zirconium fluorides mixtures

V. Khokhlov*, I. Korzun, V. Dokutovich, E. Filatov

Journal of Nuclear Materials 410 (2011) 32-38

Operation

- Create gap between cylinders of low emissivity material
- Using heaters with known output and heat sinks, establish a temperature difference across a thin ring of the sample
- Record the temperatures across the gaps after reaching steady state
- Fit using $k = (\Delta L / \Delta T) * q^{"}$, and considers radiation

Drawbacks

- Steady state can still result in convective heat losses
- Difficult the ensure uniform gap
- Requires careful design to minimize axial heat losses
- Requires calibration since heat flux is hard to directly measure

Fig. 1. Device for measuring the thermal conductivity: 1, external cylinder; 2, internal cylinder; 3, heater; 4, thermocouples; 5, fixing screws; 6, thermal shields; 7, thermal screens; 8, cooled tube; 9, rubber stopper; 10, pipe for evacuation and supply of inert gas.

Laser Flash

Thermal Conductivities of Molten Alkali Metal Halides

Makoto Harada, Akihisa Shioi,* Tsunetoshi Miura, and Shinsuke Okumi Ind. Eng. Chem. Res., Vol. 31, No. 10, 1992 2401

Operation

- Laser pulse into sample (or crucible)
- Resulting temperature rise on opposite side measured
- *α* determined by half time to maximum intensity **Drawbacks**
- Requires a 3-layer model to determine *α*
- To determine k from α , also need ρ and c_p
- Careful consideration is needed to eliminate convection or parasitic heat losses
- Relative method

Figure 2. Detailed description of measuring device for LF-II: 1, platinum disk (upper); 2, platinum disk (lower); 3, quartz chips; 4 and 5, platinum wire; 6, Pt-Pt/13% Rh thermocouple; 7, upper rod; 8, support rod.

Laser Flash

Thermal Conductivities of Molten Alkali Metal Halides

Makoto Harada, Akihisa Shioi,* Tsunetoshi Miura, and Shinsuke Okumi

Ind. Eng. Chem. Res., Vol. 31, No. 10, 1992 2401

Operation

- Laser pulse into sample (or crucible)
- Resulting temperature rise on opposite side measured
- *α* determined by half time to maximum intensity **Drawbacks**
- Requires a 3-layer model to determine *α*
- To determine k from α , also need ρ and c_p
- Careful consideration is needed to eliminate convection or parasitic heat losses
- Relative method

Forced Rayleigh Scattering/ Transient Grating Spectroscopy (TGS)

Measurement of the thermal diffusivity of liquids by the forced Rayleigh scattering method: Theory and experiment

Y. Nagasaka,^{a)} T. Hatakeyama, M. Okuda, and A. Nagashima

FIG. 1. Principle of the forced Rayleigh scattering method.

Soft Matter Characterization pp 677-703 | Cite as

Forced Rayleigh Scattering – Principles and Application (Self Diffusion of Spherical Nanoparticles and Copolymer Micelles) Laser beams

Operation

- An interference pattern is created by splitting and then crossing modulated laser beams
- A probe beam is diffracted as function of time as the interference pattern stretches and shrinks
- α is determined from the spacing of the grating and change in intensity of the probe as function of time

- Highly dependent on absorption and transmission bands of the liquid (or added dopants)
- To determine k from α , also need ρ and c_p
- Sample size can impact the heat transfer model
- Optical access to salt is required (issues with window clouding)

Time Domain Thermoreflectance (TDTR)

Investigating the Thermal Conductivity of Molten Salts Using Thermoreflectance

Syed Muhammad Mujtaba Rizvi and Alexander W. Bataller*

*Department of Nuclear Engineering, North Carolina State University, 2500 Stinson Drive, Raleigh, NC, 27607 srizvi@ncsu.edu & awbatall@ncsu.edu

doi.org/10.13182/T129-42855

Operation

- Salt is deposited onto a substrate with a thin metallic (often gold) film
- Pulsed lasers heat the surface and the temperaturedependent change in reflectance of the film is captured with a modulated probe beam
- The delay between lasers is changed and the phase delay is fit to determine properties

Drawbacks

- Costly instrumentation
- Material compatibility issues
- Optical access to salt is required

https://ne.ncsu.edu/ufsg/research/

Modulated Photothermal Radiometry (MPR)

International Journal of Heat and Mass Transfer Volume 217, 15 December 2023, 124652

Thermal conductivity measurement using modulated photothermal radiometry for nitrate and chloride molten salts

 Ka Man Chung °, Tianshi Feng ^b, Jian Zeng ^b, Sarath Reddy Adapa ^b, Xintong Zhang ^b

 , Andrew Z. Zhao °, Ye Zhang ^c, Peiwen Li ^c, Youyang Zhao ^d, Javier E. Garay ^{a b}

 Renkun Chen ^{a b} A

Operation

- Coatings are applied on the outside (black laser absorption and IR emission) and inside (Pt for corrosion protection) of an Inconel sheet welded onto a tube
- Modulated laser light heats the sheet and IR light is collected
- Thermal effusivity, $e = \sqrt{k\rho c_p}$ is determined by the amplitude of the IR light compared to the modulation frequency

- Requires calibration
- $e = \sqrt{k\rho c_p}$ is measured, requiring ρc_p to calculate k
- Requires larger amounts of salt

Transient Hot Wire

<u>J Res Natl Inst Stand Technol.</u> 1991 May-Jun; 96(3): 247–269. doi: <u>10.6028/jres.096.014</u> PMCID: PMC4924889 PMID: 28184114

A High-Temperature Transient Hot-Wire Thermal Conductivity Apparatus for Fluids

R. A. Perkins and H. M. Roder

National Institute of Standards and Technology, Boulder, CO 80303

C. A. Nieto de Castro¹

Departamento de Quimica, Universidade de Lisboa, R. Ernesto Vasconcelos, Bloco Cl, 1700 Lisboa, Portugal

Figure 1. Arrangement of current leads (i) and potential taps (P) within the pressure cell. Bridge points correspond to those in figure 3.

Operation (with salts)

- Power is supplied to a thin, glass tube filled with mercury
- The resistance and temperature of the mercury is measured

Standard operation in elec. conductive fluids

- Power is supplied to a thin, centimeter long, oxidized tantalum wire
- The wire is split between a long and a short section to remove edge effects
- A series of corrections is applied to the wire temperature to account for non-ideal effects
- Termed "absolute method" requiring no calibration, and extensive theoretical background to determine k
- Gold standard identified by former IUPAC committee

- Requires electrical isolation between "wire" and salt
- Temperatures limited by materials (oxide on tantalum wire up to 400 °C)

3ω

Chemical&Engineering Data

Frequency-Domain Hot-Wire Measurements of Molten Nitrate Salt Thermal Conductivity

Andrew Z. Zhao, Matthew C. Wingert, and Javier E. Garay*

Cite this: J. Chem. Eng. Data 2021, 66, 1, 262–270
 Publication Date: December 7, 2020 ~
 https://doi.org/10.1021/acs.jced.0c00621

Article Views	Altmetric	
496	1	

Citations 13

Operation (with salts)

- Modulated current (1ω) is supplied to a thin, alumina coated platinum wire
- The voltage at the 3^{rd} harmonic (3ω) is measured as a function of frequency
- Thermal model is fit to in- and out-ofphase temperature to determine *k*

- Current materials incompatible with fluoride salts
- Temperatures limited by coating/wire bonding during thermal expansion

Needle Probe – Modified Transient Hot Wire, combined with Concentric Cylinders

Thermal Conductivity Characterization of Fluoride and Chloride Molten Salts Using a Modified Transient Hot-Wire Needle Probe

Brian Merritt¹ · Michael Seneca¹ · Ben Wright¹ · Noah Cahill¹ · Noah Petersen¹ · Austin Fleming² · Troy Munro¹

Corradini, M., 2017, NEUP Report, Advanced instrumentation for transient reactor testing

Operation

• A thin annulus of salt (~300 μm thick) is melted between the probe and surrounding crucible

27

- Heat is applied to a thin wire within the probe, while a thermocouple measures the centerline temperature
- k is calculated by fitting the transient temperature rise to a 3 layer thermal model

- Most sensitive to probe-crucible concentricity
- Temperature limit of 750 °C
- Deviates from theory at short times due to lumping probe properties

Summary of Approaches

Technique	Properties
Concentric cylinders	Main: <i>k</i>
Variable gap	Main: k
LFA	Main: $\alpha = k \rho^{-1} c_p^{-1}$
TGS/Rayleigh scattering	Main: $\alpha = k \rho^{-1} c_p^{-1}$
TDTR	Main: k , Secondary: $ ho c_p$
Modulated photothermal radiometry	Main: $e = \sqrt{\rho c_p k}$
Transient hot wire	Main: k , Secondary: $ ho c_p$
3ω	Main: k , Secondary: $ ho c_p$
Needle probe	Main: k , Secondary: $ ho c_p$

Summary of Approaches

Schorne-Pinto, J., Aziziha, M., Tisdale, H. B., Mofrad, A. M., Birri, A., Christian, M. S., ... & Besmann, T. M. (2024). Thermal Property Modeling and Assessment of the Physical Properties of FLiNaK. *ACS Applied Energy Materials*, *7*(9), 4016-4029.

What We Are Doing

Method – Needle Probe

- Modification of the transient hot wire method (ASTM D7896-19)
 - the ASTM standard technique was used to quantify water as a standard reference liquid
 - new thermal model and uncertainty analysis is needed
- To limit convection, we combine two measurement methods:
 - the modified transient hot wire (the needle probe itself)
 - a concentric cylinders device (the crucible)

Testing Process

Method – Fitting to experiment

- Fitting is performed over most sensitive range for *k*_{sample}
- Most sensitive parameter is thickness of the salt gap, followed by salt thermal conductivity
- We don't see convection on the outside of the crucible

Results – Water and Nitrate Salts

Impact of Model Parameters

Concentricity of Probe

Radiation Heat Loss

Fluoride and Chloride Salts

Merritt, B., et al., Int. J. of Thermophysics, 149, 2022.

Comparisons: Variable Gap @ ORNL LFA @ Russian Academia of Sciences, Ural

Rudenko, A., et al., Int. J. of Thermophysics, 45, 2024.

37

Needle Probe - Limitations

Modeling

- Have bi-directional heat transfer (axial and radial)
- Multi-layer system with lumped properties
- Analytical model requires accurate system geometry and properties

<u>Experiment</u>

- Repeated use can cause probe deformation, cracked alumina, changes to lumped thermal properties
- Purity of sample (salt deposition can be difficult to remove)
- Highly sensitivity to concentricity of probe
- Temperature limit of 1023 K (750 °C)
 - Alumina electrical conductivity increases at high temperatures
 - Nickel sheath yield strength limit

<u>Isotherms</u>

Future Outlook

Encapsulated Transient Hot Wire (THW)

Jaromir Bilek, "Sensors for Thermal Conductivity at High Temperatures," PhD Dissertation, University of Southampton, 2006.

FE model

Initial Prototype

Thanks and apologies to Toni

What makes it high fidelity

Assael, Marc J., et al. *International Journal of Thermophysics* 44.6 (2023): 85.

Temperature rise, K

	Constraint	Purpose
	1. Conduction in homogeneous fluid	Conduction equation is valid
	2. Wire diameter < 25 µm	ΔT - Int: straight line (employing Eq. $\underline{8}$), and elimination of finite wire diameter effects
	3. Measurement times t: 0.1–1 s, Temperature increment: $\Delta T < 4$ K,	Elimination of convection, and monitoring of radiation absence
	ΔT -Int: straight line	
	4. Large vessel diameter	Compression work
	5. Wire diameter < 25 μm (liquids), < 15 μm (gases)	Finite wire properties correction
	6. Cell wall must be more than 0.5 cm away from the wire	Outer boundary
	7. Thermal conductivity must always be referred to the corrected reference temperature	Reference temperature
	8. Wire coating < 200 nm (polar fluids)	Current leaking prevention
	9. Employment of two wires, longer than 2 cm and 5 cm each	End effects cancelation
3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0	0.0025 s 0.05 s 0.1 s 1 s	0.15 0.10 0.10 0.05 0.00
-7	-6 -5 -4 -3 -2 -1 0	0.0 0.2 0.4 0.6 0.8
	ln(time)	lime, s

Summary

Summary

- Thermal conductivity and thermal diffusivity are difficult to measure
 - No standard measurement methods or reference liquids
 - Data scatter is too much to decisively decide the dk/dT relationship
- Using a complement of techniques can begin to bound uncertainties and overcome challenges when no standards exist
 - Experiments must match high-fidelity models to capture all heat transfer physics
- As a community, we're starting to fill the gaps with some binary and ternary mixtures
 - Unary salt properties are still needed as well as many other studies

NOTE: NIST Thermodynamic Research Center (TRC)

- From NIST "the best service we could offer is collaboration with motivated authors <u>to prepare</u> <u>machine-readable data publications</u>, exposing them in the public domain, and gradual improvement of the infrastructure and procedures."
- MSTDB-TP is great, but it contains correlation instead of raw data

Cooperating Jour

(JCED)

Journal of Chemical ar

The Journal of Chemic Fluid Phase Equilibria

Thermochimica Acta (

International Journal of

• This NIST database can be really complementary helpful because it presents the raw data

https://trc.nist.gov/

	<	C
nals	General Info Data Summary Searching Info	
		NIS1, 047
d Engineering Data	NIST/TRC ThermoML Archive	325 Broa
	ThermoML is an XML-based IUPAC Standard for storage and exchange of thermophysical and thermochemical property data. ThermoML was developed initially within IUPACProject 2002-	Boulder (
al Thermodynamics (JCT)	055-3-024 and later extended under the IUPAC project 2007-039-1-024. The namespace, ThermoML, has been reserved by IUPAC; the resultant ThermoML XML schema definition (XSD) contains all supported elements and is available in the data nist gov entry (see links to the left). In brief, each ThermoML file contains a single Citation entry containing metadata	Doulder, t
FPE)	corresponding to the published article along with all compounds (with associated sample metadata) with experimental data supported by the XSD. Data points are assigned expanded uncertainties for 0.95 level of confidence. The uncertainties of the values include both propagated uncertainties of the variables and internal TRC estimates based on the method used and	Phone: (3
CA)	data consistency. The Thermonit, archive contains property data for organics systems from the Initial publisher announcement of electronic data submission (see references below) to TRC through the 2019 calendar year as present in SOURCE on 9/30/2020 for five major journals listed on the left.	Fax: (303
Thermophysics (IJT)	Expanding the scope beyond an archive of ThermoML files	chris.muz

Group Leader: Chris Muzny NIST, 647.01 325 Broadway Boulder, CO 80305-3337

Phone: (303) 497-5549 Fax: (303) 497-5044 chris.muzny@nist.gov

Thank You

Collaborators:

- Toni Karlsson (INL)
- Austin Fleming (INL)
- Tony Birri (ORNL)
- Matt Memmott (BYU)
- David Allred (BYU)

Hardworking students:

- Peter Hartvigsen (MS)
- Peter Kasper (MS)
- Brian Merritt (MS)
- Ryan Ruth (MS)
- Jake Numbers (MS)
- McKay Sumsion, Hunter Pitchford, Tyler Hamm, Max Colton, Ben Wright, Spencer Larson, Michael Seneca, Maren Johnston, Noah Peterson, Noah Cahill, Crewse Petersen, Jon Dromey, Tom Carson, Sadie McGinn, Ara Bolander, Logan Hardy, Jace Davis, Kirsten Steele, Erik Barbosa, Jay Bettinger, Jared Magnusson (BS)

Funding

DE-NE0008870, NRC Award 31310019M0006, INL Contract 238361, BYU's Center for FSP, GRSI @ ORNL **Acknowledgements - Funding**

Specific sources of uncertainty

Our current uncertainty quantification involves 4 main sources of error:

- 1) Goodness of fit error of the model to experimental data and other system biases.
- 2) Corrections based on measurements compared to standard reference materials (i.e. water) and FEM.
- 3) Propagation of the uncertainty from every parameter in the analysis model.
- 4) Variance in measurements.

Curve Fitting

 Thermal conductivity and diffusivity values are varied and a non-linear least squares fit is used

000000000

1

1.1

1.2

0.9

• Evaluate χ^2 error

3.5

3

2.5

2

1.5

1

0.5

0

-0.5

0.3

0.4

0.5

0.6

0.7

0.8

Correlated Parameters

Use Pearson coefficients to determine which model parameters are directly correlated

$$\rho_{ij} = \frac{\int_0^t \left[\frac{df(t)}{dp_i} \cdot \frac{df(t)}{dp_j}\right] dt}{\left[\left(\int_0^t \left(\frac{df(t)}{dp_i}\right)^2 dt\right) \cdot \left(\int_0^t \left(\frac{df(t)}{dp_j}\right)^2 dt\right)\right]^{1/2}}$$

1) ϕ_0 , 2) k_{probe} , 3) α_{probe} , 4) R_{c1-2} , 5) k_{sample} , 6) α_{sample} , 7) r_{sample} , 8) R_{c2-3} , 9) $k_{crucible}$, 10) $\alpha_{crucible}$, 11) h, 12) n, 13) ξ , 14) ϵ_{probe} , 15) $\epsilon_{crucible}$.

Sensitivity Analysis

Radial compared to axial heat transfer

Propagation of uncertaion

ANALYTICAL MODEL REFINEMENT

