Workshop on Measurement and Analysis of Thermochemical and Thermophysical Properties of Molten Salts

Calorimetric Methods for Heat Capacity Determination

Dr. Juliano Schorne-Pinto

Research Professor

Nuclear Engineering Program, Mechanical Engineering Department, University of South Carolina

Molten Salt Reactor P R O G R A M

General Atomics Center

College of Engineering and Computing

UNIVERSITY OF SOUTH CAROLINA

U.S. Department of Energy

Outline

- Why Heat Capacity is Important?
- A Bit of History of the MSRE
- Behavior of Heat Capacity for Molten Salts
- Measurement Instruments
 - Drop Calorimeters
 - Differential Scanning Calorimeters
- How to Carry Out Heat Capacity Measurements?
 - Methods and Factors that Affect the Measurements
 - Optimization of Experimental Conditions
 - Measurements, Data treatment and Errors
- Coupling Different Type of Measurements
- Example: Comparing FLiNaK Results with Literature
- Can We Get Closer to the Correct Value?
- Some Key References

Error in the heat capacity of

* Assessed for the MSTDB-TC (internal work)

2/24

Why Heat Capacity is Important?

• Importance of accurate heat capacity:

- Heat capacity is the amount of heat needed to raise the temperature of the material by 1 K
 - Molar heat capacity (C_P) in J/mol.K
 - Specific heat capacity (c_P) in J/g.K
- Describes Gibbs energy temperature -dependence

$$\Delta G_{i}^{\circ}(T) = \Delta H_{298.15}^{\circ}(i) + \int_{298.15}^{T} \mathcal{C}_{P_{i}}^{\circ}(T) dT - T \left(S_{298.15}^{\circ}(i) + \int_{298.15}^{T} \frac{\mathcal{C}_{P_{i}}^{\circ}(T)}{T} dT \right)$$

A Bit of History

• MSRE has not always been an 8-MW(th) reactor

<u>Heat balance calculations</u> were modified over the years resulting in an <u>increase of 11%</u> of its maximum power [7.2 to 8-MW(th)] because <u>heat capacity was not well known</u>

Fuel: ⁷LiF-BeF₂-ZrF₄-UF₄ (65.0-29.1-5.0-0.9 mole%) **Coolant salt:** ⁷LiF-BeF₂ (66-34 mole%)

Reactor operational data suggested that $c_p(T)$ is <u>not temperature</u> <u>dependent</u>

Behavior of Heat Capacity for Molten Salts

• The heat capacity can be mathematically approximated

$$C_P(T) = \left(\frac{dH}{dT}\right)_P = a_0 + a_1T + a_2T^{-2} \dots$$
 Maier-Kelley polynomial

• $C_P(T)$ of molten salts is assumed to be constant (a_0) or linear $(a_0 + a_1T)$

Measurement Instruments: Drop Calorimeters

- Custom-Made Calorimeters
- Setaram AlexSys 800/1000 Calvet Calorimeter
- Setaram MHT96 Calorimeter

<u>AlexSys</u>

- Has the highest sensitivity
- 2 cylindrical thermopiles with 128 thermocouples each
- Limited temperature (800/1000 °C)

MHT96 Calorimeter

Ice Calorimeter at Federal Bureau of Mines

Legacy instrument

Smith *et al.* (1961) – Construction, Calibration and Operation of Ice Calorimeters

6/24

General Atomics Center

College of Engineering and Computing

UNIVERSITY OF SOUTH CAROLINA

Schorne-Pinto et al. (2020) – Adaptation of Ph.D. thesis

Measurement Instruments: DSCs

Differential scanning calorimeters can be divided in three categories:

https://setaramsolutions.com/

C_P Measurements on Liquids is Challenging for HF-DSCs

Commercially available calorimeters for measuring C_P of liquids:

Vessel type	Measurement	Representative calorimeters	Temperature and pressure ranges	Relative quality of heat capacity measurement
Sealed, constant volume, with vapor space, <0.1 cm ³	Approximately C_P (saturated vapor pressure + external pressure) by temperature-scanning/ temperature-modulated calorimetry	DSC from various manu- facturers (e.g., TA Instru- ments, Perkin-Elmer, Netzsch, Mettler)	93–2273 K, depending on specific calorimeter; pres- sure capability depends on ampule	Poor
Sealed, constant volume, with vapor space, 1–10 cm ³	Approximately C_P (saturated vapor pressure + external pressure) by temperature-scanning heat-conduction calorimetry	 TA Instruments MC-DSC (1 cm³) Setaram C80 (10 cm³) Setaram MicroDSC (1 cm³) 	 233–473 K, atmospheric to 41 MPa room to 573 K, atmospheric to 100 MPa 253–393 K, atmospheric to 70 MPa 	Good-better

Chapter 2: "Calorimetric Methods for Measuring Heat Capacities of Liquids and Liquid Solutions" by L. D. Hansen and D. J. Russell from the book "Heat Capacities – Liquids, Solutions and Vapours", Editors E. Wilhelm & T. M. Letcher, RSC Publishing (2010)

...

General Atomics Center

College of Engineering and Computing

How to Carry Out Heat Capacity Measurements?

- Three methods can be used for determining the heat capacity
 - Drop method (indirect) Drop calorimeter
 - Three-step method/Sapphire method (ASTM-E1269 & DIN 51007) Heat-flux and Calvet DSC
 - Small temperature steps (Höhne et al. & Gaune-Escard) Calvet DSC
- Factors affecting heat capacity of molten salts

Factor	Drop	Heat-Flux	Calvet	Effect
Sample purity	Yes	Yes	Yes	It will affect the C_P of material and corrections should be made (if small and quantified)
Pan Type and Sealing	Yes	Yes	Yes	It should be compatible with the sample and prevent any potential leakage
Sample Size	No	Yes	No	Large samples can give erroneous C_P
Heat Transfer Mechanisms	No	Yes	No	Conduction, convection, and radiation (T > 600 °C) can affect heat flow
Sample Positions	No	Yes	Yes	Bad crucible placement with generate shifts in the C_P data

General Atomics Center College of Engineering and Computing

Sensitivity and Temperature Calibration

Metal calibrants – IUPAC Technical Report				Crucible/liner material			
Calibrant	T _{fus} /K	T _{fus} /°C	∆ _{fus} h/J.g¹	Ni	TZM	SiO ₂	SS
Gallium	302.915	29.7646	80.07 ± 0.13	+	+	+	+
Indium	429.748	156.5985	28.62 ± 0.04	+	+	+	+
Tin	505.078	231.928	60.38 ± 0.15	+	+	+	+
Bismuth	544.552	271.402	53.18 ± 0.12	+	+	?	+
Lead	600.612	327.462	23.08 ± 0.11	-	+	+	+
Zinc	692.677	419.527	108.09 ± 0.43	-	+	+	_
Antimony	903.778	630.628	162.55 ± 4.91	-	!	+	_
Aluminum	933.473	660.323	399.87 ± 1.33	-	_	_	_
Silver	1234.93	961.78	104.61 ± 2.09	+	+	+	+
Gold	1337.33	1064.18	64.58 ± 1.54	!	!	+	-

• Atmosphere – all instruments

STA 449 F1 Jupiter[®]:

Crucibles: 100 µl SS w Ni liner Heating rate: 4 K.min⁻¹ Argon: 70 ml.min⁻¹ Helium: 25 ml.min⁻¹

<u>Heat capacity measurements:</u> Argon: **10-20 ml.min⁻¹** Helium: **10 ml.min⁻¹**

Recommended salt calibrants (*evaluated during MSTDB-TC development)

Calibrant	T _{fus} /K	T _{fus} ∕°C	Δ _{fus} h/J.g¹	Ni	TZM	SiO ₂	SS
FLiNaK*	732.9 ± 1	459.8 ± 1	440.3 ± 15.2	+	+	-	_
CsCl	918 ± 1	644.8 ± 1	121.051	+	+	+	+
NaCl	1074 ± 1	800.8 ± 1	481.805	+	+	+	_
NaF*	1269 ± 1	995.8 ± 1	793.94 ± 11.2	+	+	-	_

Preparing Oxygen/Moisture Sensitive Samples for Measurements Outside of Glovebox

Developed and tested a series of crucibles*

	100 µl SS w Ni liner	27µl SS w Ni liner	130µl SS w Au liner	Sealed quartz	31.5 µl TZM	44 µl Ni folded	44 µl Ni welded
Source	Netzsch + UOIT &	Netzsch + UOIT &	Setaram + USC	USC	USC	USC	USC
	050	050					
Mass	~1480 mg	~ 875 mg	~2240 mg	~450 mg	~2435 mg	180 mg	110 mg
Max. sample mass	10-50 mg	10-20 mg	50-80 mg	>100 mg	30-50 mg	30-50 mg	30-60 mg
Sample volume	30-50%	30-50%	30-50%	50-70%	40-50%	40-50%	40-50%
Ratio Wgt _s /Wgt _{cr}	3.38%	2.29%	2.23%	22.2%	2.05%	27.78%	54.54%
Leak resistant	Yes	Yes	Yes	Yes	No	No	Yes
Fluorides	Yes	Yes	Yes	No	Yes	Yes	Yes
Chlorides	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Melting point	Yes	Yes	No	Yes	No	No	Yes
Enthalpy of fusion	Yes	Yes	No	No	No	No	Yes
Heat capacity	Poor	Poor	Good	Bad	Bad	Good	Best
Calorimeter	HF-DSC	HF-DSC	Calvet only	Calvet only	All DSCs	Calvet & drop	Calvet & drop

Measurements - Drop Calorimetry

- Provides $H(T) H_{298.15}$
- Can be used to high-temperatures
- Need multiple drops to get reasonable statistics
- Need equilibrated samples
 - ✓ If A + B = AB, it will be impossible to discriminate $\Delta H_{reaction}$ from H(T)- $H_{298.15}$
- Time-consuming technique
 - ✓ Each temperature takes 4-7h
 - ✓ Machine needs long time to stabilize
- Oxygen/moisture sensitive samples need encapsulation
 - Leak testing is required
 - Need extra corrections for capsule mass

MHT96 – up to 1500 °C

General Atomics Center

College of Engineering and Computing

How to Treat Data, Estimate Errors and Report Values

• Treating raw data $\frac{\Delta H_{Sample}}{M} \cdot (H - H_{298})_{Al2O3}$ m_{Al2O3} $(H - H_{298})_{Sample} =$ ΔH_{Al2O3} m_{Sample} Weight Average $H Al_2O_3(T_{RT})$ $H Al_2O_3(T_{drop})$ $H(T_{drop}) - H(T_{RT}) = H(T_{drop}) - H(T_{RT})$ n Tdrop Integration T_{RT} (°C) (mol) (°C) (µV.s) (J) (J) (J) (J/mol) (J/mol) (mg) 4.521E-04 26.2 599.47 6066.4 46.1 -757.60 -729.50 28.09 62131 Al_2O_3 14.38 53731 39.5 26.3 599.47 3106.4 51913 Sample 2.677E-04 13.41 50095 5773.4 -647.22 24.93 Al_2O_3 40.9 4.011E-04 26.1 599.47 -672.14 62139

H(T)-H298 (J.mol⁻¹)

51.913.1

53,552.3

54,423.2

- Statistical analysis (ideally ≥ 3 samples per temperature)
- Fitting a H(T)- H_{298} equation assuming $C_P(T)$ constant

$$H(T) - H_{298} = a + bT$$
$$C_P(T) = \left(\frac{dH}{dT}\right)_P = b$$

Drop#1

Drop#2

Drop#3

[¥] u= SD /√N, N = 4

• $C_P(T)$ errors for this method is between 5-15% (using *CI* of the regression)

General Atomics Center

Evaluation of measurement data — Guide to the expression of uncertainty in measurement (GUM) Schorne-Pinto et al. (2020) – Adaptation of Ph.D. thesis

13/24

College of Engineering and Computing

Measurements – HF-DSC

DSC 404 F3 Pegasus[®] – Netzsch

Sensor Type S (DSC404F1A72) Crucibles: 100 µl SS w Ni liner Conditions: 4 K.min⁻¹, Ar flow of 20 ml.min⁻¹

Data treatment and Errors – HF-DSC

• Experimental error defined by variation in sapphire reference values (T. Karlsson)

General Atomics Center

College of Engineering and Computing

Measurements – Calvet

Schorne-Pinto et al. (2019) - https://doi.org/10.1016/j.tca.2019.178345

College of Engineering and Computing

UNIVERSITY OF SOUTH CAROLINA

Limited length crucibles required

Thermopiles

Sensitivity calibration – Calvet

 $Ratio (Sensitivity) = \frac{C_{P,Sapphire} - measured}{C_{P,Sapphire} - NIST}$

Tinitial (K) Tfinal (K) Corrected (K) Enthalpy (J/g) Raw-cp (J/g.K) AI2O3-NIST (J/g) Ratio ΔТ 747.72 752.73 747.69 4.96 5.598 1.129 1.163 0.971 Creating a sensitivity curve 752.73 757.73 752.64 4.95 5.588 1.129 1.164 0.970 757.73 762.73 757.59 4.95 5.571 1.126 1.166 0.966 762.73 767.72 762.53 4.94 5.538 1.122 1.167 0.961 767.72 4.96 5.587 1.128 501_Ex 772.73 767.47 1.169 0.965 772.73 777.72 772.42 4.93 5.556 1.126 1.170 0.962 777.72 782.72 777.36 4.94 5.562 1.125 1.172 0.960 782.72 48-787.73 782.30 5.583 1.127 1.173 4 95 0.961 787.73 792.73 787.25 4 94 5.578 1.129 1.175 0.961 792.73 797.73 792.19 4.94 5.526 1.118 1.176 0.951 46 797.13 797.73 802.73 4.94 5.540 1.121 1.177 0.952 1.00 44 HeatFlow (mW) Heat: 5.587 (J/g) **************** T: 494.58 and 499.58 (°C) 42 t: 1.3 and 1.6 (h) 0.95 Peak Maximum: 499.617 (°C) / 1.391 (h) Peak Height: -1.738 (mW) 40-Onset: 495.185 (°C) / 1.342 (h) Offset: 499.604 (°C) / 1.419 (h) 0.90 Baseline Type: Tangential Sigmoid Ratio 88.0 Mass Used: 63.54 mg (initial) 38-36 $m_{crucible-Reference}$ = 109.89mg 0.80 34m_{crucible-Sapphire} = 109.79mg difference = 0.10mg (0.09%) 0.75 32-1.25 1.35 1.45 1.3 1.4 1.5 1.55 4.6 750 850 900 800 950 Η Time (h) Temperature (K) *C*_{*P*,Sapphire –measured} $= \frac{1}{\Lambda T}$ **General Atomics Center** Schorne-Pinto et al. (2024) - unpublished College of Engineering and Computing 17/24 Schorne-Pinto et al. (2019) - https://doi.org/10.1016/j.tca.2019.178345

Data treatment – Calvet

^mCr,<u>Ref^{-m}Cr,FLiNaK</u>·C_{P,Nickel} H_{FLiNaK}/_{ΔT_{FLiNaK} -} m_{FLiNaK} $C_{P.FLiNaK} =$ Ratio Ratio

Schorne-Pinto et al. (2019) - https://doi.org/10.1016/j.tca.2019.178345

Coupling Different Type of Measurements to Obtain a Complete Understanding of Molten Salt Behavior

Calphad method requiring self-consistency results in accurate representations of thermodynamic values

Melting point end enthalpy of fusion

T _{fus}	$\Delta_{fus}H$	Error	N°	Reference
K	J.mol ⁻¹	%		
735	16,646	2	27	R (1982)
730.6	16,318	1	3	Y (2016)
737.6	18,275	N/A	1	K (2009)
727	16,483	5	-	P (1956)
725	17,099	-	-	K (1982)
730.8	15,980	N/A	1	W (2006)
735	16,673	3	14	K (2011)
739	17,610	0.8	3	C (2017)
736	18,268	N/A	1	H (1986)
733.8	18,180	3.5%	8	S-P (2024)
	17,153	± 868 J		Average

Schorne-Pinto et al. (2024) - https://doi.org/10.1021/acsaem.4c00321

Example: Comparing FLiNaK Results with Literature

• Need to couple experiments with modeling to assure capture of realistic behavior

Schorne-Pinto et al. (2024) - https://doi.org/10.1021/acsaem.4c00321

Can We Get Closer to the Correct Value?

- Dealing with disparate data
 - Averaging all the data would be a mistake large datasets would dominate results
 - Bias by source of data
 - A value recommended by committee could still be incorrect
- In an ideal world with infinite time and money
 - Well characterized samples before and after measurements
 - Compare different methods
 - Prioritize the use of instruments with highest sensitivity
 - Confirm agreement and reproducibility by changing conditions (e.g., mass, atmosphere, crucibles, etc.)
 - Analyze each factor of error
 - Average of multiple consistent measurements

General Atomics Center College of Engineering and Computing

Some Key References

Books:

- "Differential Scanning Calorimetry" by Höhne et al., Springer-Verlag Berlin Heidelberg (2003)
- "Heat Capacities Liquids, Solutions and Vapours", edited by E. Wilhelm & T. M. Letcher, RSC Publishing (2010)
- "Handbook of Differential Scanning Calorimetry Techniques, Instrumentation, Inorganic, Organic and Pharmaceutical Substances", edited by J. D. Menczel & J. Grebowicz, Elsevier (2023)

Norms:

- **ASTM E1269**: Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry
- **DIN 51007**: Thermal analysis Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) –General Principles

Acknowledgements

G

R

Α

M

Experimental work & MSTDB-TC development effort under the Molten **Salt Reactor Program**

0

Director:

R

P

J. Schorne-Pinto

R. McManus

A. M. Mofrad

Prof. T. Besmann

Students:

C. M. Dixon Ph.D. candidate Master's candidate

Z. Gardiner Undergraduate Researcher

Postdoc fellows:

USC team

Alumni who work with molten salts:

J. A. Yingling INL

SNL

M. S. Christian K. Johnson Kairos

Research Professors:

M. Aziziha

Intel

J. Paz Soldan Palma R. Booth

J. Wilson

PM Aiswarya

Questions

julianos@mailbox.sc.edu

General Atomics Center College of Engineering and Computing

Radiological Facility at USC (U + limited Pu work)

Two 750 sq. ft. laboratories:

Gloveboxes

> 50 salts (chlorides, fluorides and iodides) Purification furnace system inside glovebox

Chemical analysis
 Chemical analysis by ICP-OES

Calorimeters

DSC 404 F3 Pegasus[®] - Netzsch

STA 449 Jupiter® - Netzsch

Calvet Pro - Setaram

Curres

Melting points (±3 K), enthalpy of fusion (±3% for HF DSC, ± 1% Calvet), C_p (1% solid and 1.5% liquid using the Calvet)

 XRD (+3 other units) -Prof. zur Loye's lab

Rigaku Smartlab XRD (RT-1100 °C)

Furnaces for thermal treatment and synthesis
 Tube furnace (RT-1700 °C)
 Muffle - Glovebox

General Atomics Center College of Engineering and Computing

