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Motivation:

e Thermal physical Properties are pivotal for multi-physics reactor codes, for
design and NRC benchmarking of molten salt reactors

— Accurate understanding of properties informs steady-state temperature distributions,
thermal responses to transient conditions, expected pressure distributions, thermal
efficiency of reactor efc.

« Thermal Conductivity measurements of MSR relevant salts are incredibly
challenging:

- U, Th, and Be bearing salts are reactive/hazardous

— Direct standard steady state measurement techniques are notoriously sensitive to
experimental parameters(heat loads/losses/resistances) in a changing system

« Corrosion/salt infrusion/hazards makes repeat measurements challenging

- Indirect measurement/transient techniques rely on knowledge of other parameters
(density/heat capacity) to calculate thermal conductivity
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Main Driver for Property
Characterization: MSTDB

X

The Molten Salt Thermal Property
Database (MSTDB) is an effort funded by
the DOE-NE funded Molten Salt Reactor
(MSR) Campaign and the Nuclear
Energy Advanced Modeling and
Simulation (NEAMS) program.

Thermal Conductivity has the least
amount of entries in MSTDB-TP

- Almost no actinide/Be data.

MSTDB-TC is managed by UoSC, MSTDB-
TP is managed by ORNL.

NEAMS

Nuclear Energy Advanced Modeling and Simulation
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ORNL Variable Gap System:

« Steady-State direct thermal conductivity
measurement.

« Two sections:

- Inner Containment contains heater/thermocouples

Digital Variance

‘ Indicator

- Outer Containment contains salt specimen.

* Inner containment can move vertically to
achieve different specimen lengths or “gaps”

« Small gap sizes and large area allows for 1D
heat transfer to be used with temperature
differences to back out the thermal conductivity
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Variable Gap Working Principles: Electrical Circuit analog

e Fixed resistance: containment
components Rtnraa

« Gap dependent resistance: Salt Tt Rentower  Tiower
AT 1

° —_— = R : -|— X
q" Th,Fixed Keond+Krad

 Measuring the thermal resistance at
multiple gaps and taking the slope of the
line removes fixed resistances

slope:2791.02
conductivity [W/mK]:0.358
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Ra Number

0.30 =
Convection Effects: 1800
g0.25 1500
« For a fluid under temperature difference, 3 .
natural convection needs to be g 02
considered. 5 -
= 0.15
« Very thin gap ( <0.3mm) heavily reduces & 600
these effects. 0.10 b
« Measured by the Rayleigh number: 0.05 300 400 0
_ Rg = gaATxSCppz Temperature [° C]
KN

e A conservative criterion of <1700 was
given to ensure purely conductive flow.

e For gap size, targeted AT, and salt
properties, convection can be assumed

negligible in majority of salt systems I 1 l 1
measured.

pecimen Gap

Gallagher R. et al. Design and performance of a variable gap system for
thermal conductivity measurements of high temperature, corrosive, and . . . .
w reactive fluids, International Journal of Heat and Mass Transfer, Volume 192,

2022,
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Radiative Heat Transfer Effects

o At high temperatures, radiative LN L ]
heat transfer becomes a 2 L w0003, ¥ enrt o —1
concern. e e |

=t SISTANCE

o Salt optical properties are not
well known (considered
optically thin but participating
medium)
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e For salt, gap sizes are small e
enough that this porfion
becomes negligible.
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e Experimentally its effects can be
seen by deviation from non- 3000
linear trend. If present, choose =
lower gap sizes to fit to. 0
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Heat Shunting Effects

e Two resistive heaters (“*guard” and “main”)
apply a heat load to the salt, with active air
cooling below the sample.

 While the power output of these heaters
can be determined by P = IV through the
actively heating length of wire, the amount
of this power truly driven through the salt is
difficult to calculate.

* The % power lost through axially and radially
is called heat shunting.

» This heat shunting effect can change based
on furnace temperature/working fluid
properties/active cooling/insulation etc.
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Calibration and Correction Approach

* Major effort has been put forth to fully characterize the power input (Q) for the system

e Determine the true value of Q for varied experimental variables can be challenging due
to multiple heat sources and changing experimental conditions:

— Main power heater

- Guard power heater
- Axial power heater

- Furnace temperature
— Cooling Air Pressure

— Material Degradation
— Insulation

e Therefore, a parametric study was done with a known fluid (He) to determine the
effects of these conditions on the experiment
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Calibration with Helium Concerns

e TO ensure that a proper calibration factor can be applied for
the heat shunfing, the most important factor is matching the
two experiments as closely as possible

e Salt Vs Helium differences

— Helium is fransparent medium vs participating but optically thin for salf
(radiative)
 Low Gap sizes makes negligible.

- Ra — 0 for gap sizes chosen for Helium, slightly higher Ra for salt (1400s)
 Still considered negligible

- Containment backfill originally with Ar for salt. Significantly lower
thermal losses!

e Both experiments will be done with Helium to keep similarities even if thermal losses
are higher
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Too much variabllity from experiment 1o experiment...

« Need an anchor point:

— AT Helium Calibration Chloride Containment

e |t was found that across different 20.0-
experimental configurations that
matching AT resulted in the same
power correction factor (ie T 1m0
specific heat flux across sample).

e Therefore, the system was
calibrated using constant 15
electrical power across a variety
of cooling/furnace temperatures | |
using Helium. ‘ ’

6 8 10
Specimen Temperature Difference (AT)
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Benchmarking New Method: LICl/ NaCI-KCl|

Measurements
—— LIiCl (kinetic theory)
1.0{ ---- LIiCl (Reference correlation with uncertainty)
) . 93 e LiCl (ORNL)

e TO benchmork the new calibration c e  NaCI-KCl (44%/56%) (ORNL)
method, LICI/NaCI-KCI (44-56) salt = 08 NaCI-KCl (kinetic theory)
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Actinide Measurement (UCI3-NaCl)
» UCI3-NaCl (37/63) prr—

== LiCl (Reference correlation with uncertainty)
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e Deviates from kinefic theory In
valuation

— Actinides have complicated
structures/parameters less known
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Kinetic Theory Actinide Deviations

« Compositional Mass AXT) = 4, (X T[T - jf%("' n] 2]
Variation s , 2\
~ Performs well with ions of Gmass = Y Xi# [ —1]
. . m
similar molar mass. i=0

Struggles with high FLiBe NBG+2%UF ‘

disparity (ie actinides)[1] g = 0.09 g =145
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https://doi.org/10.1134/S0036029523020039

Sources of uncertainty in the variable gap system

e Temperature Measurement:
— Thermocouple placement and measurement accuracy

« Gap measurement

e Cooling air pressure

e Helium calibration vs salt measurement matching
e Bubble formation in Salt

e Salt degradation/corrosion products
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Future Work

e Post Analysis of salt
— Corrosion products
— Salt samples taken from different points in containment
— Confirm composition measured

e Further Measurement of actinide salts
- UCI3-NaCl (Compositional)

« Additional species can be added

— NaF-UF4 Eutectic (PNNL)
— NaF-KF-UF4 (57/16/27) (Virginia Tech)

e Further reduction in uncertainty in optimization of setup
— Streamline calibration
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